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Abstract—A comparative assessment of several computational turbulence models for third-order diffusive
transport terms, uuf and uf?, in second-order closure equations has been carried out by applying the
models to various non-isothermal turbulent flows. The second-order quantities appearing in the models
are adopted from directly measured values. The models tested in the present study are : conventional simple
gradient model, eddy-damped quasi-normal approximation model, and Weinstock’s theoretical model
which is derived by formally integrating the Navier—Stokes equation [J. Weinstock, J. Fluid Mech. 202,
319-338 (1989)). It is rather a surprise to find that the simple gradient model performs equally or even
better than the other more complicated ones for the scalar variance diffusion, ¥,0*. However, it is found
that the computational model for the scalar flux diffusion, 44,0, must include the shear-gradient contribution
in addition to the simple gradient model. Moreover, a buoyancy correction method is proposed to take
into account the buoyancy effect in the gradient-type models.

1. INTRODUCTION

THE THIRD-ORDER diffusive transport terms, m and
u0?, which appear in the second-order closure equa-
tions for the scalar flux (40) and the scalar variance
(0%), respectively, play significant roles in spacially
transporting the second-order quantities of interests
in, for example, a thermally stratified atmospheric
boundary layer [1], the thermal dispersion field behind
an elevated line heat source [2,3] and a turbulent
thermal convection [4].

During its infant period of the second-order model-
ling, such higher-order moments were approximated
by simple gradient-type models [S-9]. However, since
it was decidedly shown by Zeman and Lumley [10]
that the evolution process of a buoyancy-driven mixed
layer in the upper atmosphere depends crucially on
the third-order transport, serious attempts have been
made at deriving elaborate transport models by
Dekeyser and Launder [11], Lumley [12] and
Weinstock [13), which are in order of increasing com-
plexity. One of the important questions is whether
such elaboration of the model formulation results in
a better prediction accuracy or not.

The present study is addressed to finding an objec-
tive answer to the above question by testing the
models against a number of available experiments,
and to proposing a desirable method to modify the
previous simple gradient-type model for flows under
a non-negligible buoyancy effect.

2. THIRD-ORDER DIFFUSIVE TRANSPORT
MODELS

2.1. Simple gradient-type model

The conventional simple gradient-type model for
the scalar flux diffusion term, w0, takes the following
form (e.g. Launder [9]):

; — Ou.

—uu0 = Cr, (u_,—uk %%9 +uuy %’kg) 0}
The above model may be derived from the exact equa-
tion for wauf by neglecting convective transport,
molecular dissipation, generation due to mean field
gradients and the contribution of pressure transport.
Further, it is implicitly assumed that the generation
due to the shear stress gradient is also negligible com-
pared with that due to the scalar flux gradient.

As for the third-order diffusive scalar transport
term, u0°, the following model has been widely
adopted in calculating atmospheric boundary layer
flows (e.g. Wyngaard [14]):

— 86*
—u0? = Ciruu, E )

which can be obtained in the manner analogous to
the above description for the model (1).

The model constant C, has been assigned to a
number ranging from 0.11 to 1.0, i.e. 0.11[2], 0.14 [15],
0.15 [13], 0.2 [9], 0.3 [8], and 1.0 [12]. Excluding the
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[4] coefficient matrix

a b, C, C, C;, model constants

g,  gravitational acceleration in the direction i

h  source height

K, turbulent eddy coeflicient tensor

Ly half-width of mean temperature profile

N Brunt-Viisili frequency, (gBd7/dy)*?

g°  twice the turbulent kinetic energy,

T  mean temperature

U mean velocity

u  velocity scale, u® = {uu;

u,  friction velocity

u, v, w velocity fluctuations in axial, vertical,
and lateral directions, respectively

x, y coordinate axes in axial and vertical
directions, respectively.

Greek symbols
f  thermal coefficient of cubical expansion

NOMENCLATURE

£ dissipation rate of turbulent kinetic energy

&  dissipation rate of temperature variance

#  temperature fluctuation

0, temperature scale

v,  turbulent eddy diffusivity

7,  buoyancy time scale

7, time scale for Weinstock’s model in
equation (7)

7,  dynamic time scale

7, thermal time scale.

Subscripts
eff effective
p  peak.
Superscripts
() conventional time average
! r.m.s. value.

highest value which has not been used by others, C
is made equal to the average value of 0.18 in the
present calculation.

2.2. Dekeyser and Launder’s model

Dekeyser and Launder [11] have proposed several
alternative models for Ei"fé and u,0, which are derived
from the exact transport equations for uuf and u6?,
respectively, using a number of sxmphfymg assump-
tions. The differences between the alternatives arise
from the inclusion or exclusion of a dissipative term
and a pressure-isotropization term in the modelling
process. However, since they were not able to con-
clude that any of the models performed distinctively
better than the others, the following simplest models
are tested in the present comparative study:

—uu,0 = Cyr, (u 1y il +uu, o s G+@iufg{>

8xy Ox; ax;

(3

2
—uf? = Cyr, (u W — 0 +2W ouk0> @
ax, x;,
where C,=0.11 and 1,=g°/2¢ is the turbulent
velocity time scale.

It may be noted by comparing these models with
those of (1) and (2) that the last terms in (3) and (4)
are added to the simple gradient-type models. The
appearance of these terms implies that the con-
tribution of the shear stress gradient to the generation
of uuf and that of the scalar flux gradient to the
generation of uf” are retained in formulating the
models.

2.3. Lumley’s model

Neglecting substantial derivatives, production and
rapid terms, and higher-order cumulants in the trans-
port equations for uuf and w6, Lumley [12] has
presented algebraic equations for the third-order
terms in tensorial form. Explicit expressions for u, uuf
and u,67 from their equations are as follows:

. =G
HC, +2CH(1+Cy)
X, A0y (5)

—ul = g5e v, v

1 —. 807 0wl
1,07 = e U /P 6
u6 14+ Cytp/T, * (u,uk 0x; +2ub ox, ) (©)
where C; = 3.5, C, = 7.5,
....... du,0 w0  — duu,
Ay = win g Fu g Tl G

and 1, = %/2¢,, the turbulent thermal time scale.
Since the inhomogeneity in temperature is assumed
to be weak, the buoyancy effect is neglected in the
models.

2.4. Weinstock's model

The above models were derived based on the eddy-
damped quasi-normal approximation as applied to
single-point moments. But, it was found by Wyngaard
[14] that there is a significant discrepancy for eddy-
damping in inhomogeneous flows. In order to avoid
such basic assumptions inherent in the eddy-damping
method, Weinstock [13] performed a formal inte-
gration of the Navier—Stokes equation that permits
one to express single-time third-order moments in
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terms of two-time fourth-order moments, which are
then evaluated by neglect of two-time fourth-order
cumulants. Simplifying assumptions he made are: (a)
all quantities are assumed to vary slowly in space
and time compared with the integral length and the
Lagrangian time scale ; (b) the anisotropy is small; (c)
average quantities may vary in the vertical direction
(horizontal stratification) only ; and (d) the mean flow
is unidirectional in the form, U = [U(x;),0,0].

The final models for the third-order transport terms
are represented in matrix form:

[;42, u2u%v Eéa UW]-I = _TO[A]
a2 of o el dwd W
0x, 0x," 8xy T dx, 8xy " dxa |
€]
Here, 1, is a time scale defined by
0.151,
To {8)

T 140.17N*tZH(NY)

for high Reynolds number, N> = (gB 8T/dx,) is the
Brunt-Viisild frequency, H(N?) is the Heaviside step
function and f§ is the thermal expansion coefficient.
The coefficient matrix [4] has 4 x 6 elements which are
functions of N?, T and second-order terms (for details,
see ref. [13]).

2.5. Modification of simple gradient-type models to
include the buoyancy effect

In the k—¢ turbulence model, the eddy coefficients
of the third-order diffusive transport terms are rep-
resented by the turbulent eddy diffusivity v/, where
g, is the turbulent Prandtl number. Such practice is
based on the assumption that the second-order tur-
bulence quantities are transported in a manner similar
to the momentum and heat.

For horizontal flows under an appreciable buoy-
ancy effect, the algebraic stress model of Ljuboja and
Rodi [16] or Chung and Sung [17] can be manipulated
to obtain the eddy diffusivity, v,, in the following
form:

Ty

_ =3 5
= Coy e O brbal) )

Vi
where v is in the direction opposite to the gravitational
vector. Model constants «, b and C, are functions of
other constants. Adopting the constants in Ljuboja
and Rodi [16], a ~ 0.075,b = 0.17and C, = .23. The
expression (9) together with the time scale in equation
(8) strongly implies that a certain turbulent time scale
in a buoyancy-affected flow field must depend on the
time scale ratio N7, and that the velocity scale squared
for turbulent transport processes be a function of
buoyancy. For a thermally stable layer N” > 0 and
v < 0, hence the turbulent eddy coefficient (9)
becomes smaller than that in neutral stratification
and for a thermally unstable one, vice versa; these
characteristics are physically realistic.
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In order to generalize the above observation to the
turbulent eddy coefficient K;; of the third-order diffus-
ive transport terms, the buoyancy relaxation time
scale, 7, = 36)/(N?0?), and the effective buoyant
Reynolds stress,

both of which are proposed by Lumley ez al. [1,18],
are introduced to construct the turbulent eddy
coefficient in a form

T

o S Sy w0 +gud)r,,
KU Cs 1 +GH(N2)TV/Tb [uluj bﬂ(glu] +g_lul )Tﬂ]
(10)
where, g is the gravitational vector field,

g, = (0, —g,0). The Heaviside function H(N?) is also
introduced in the above formulation as in model (8)
due to the reason discussed in Weinstock {13}. From
the physical point of view, the eddy coefficient should
be positive. Therefore, when the bracketed term in
equation (10) becomes negative due to strong down-
ward heat flux very near a heat source or a sink, for
example, K;; must be made equal to zero.

Accordingly, the simple gradient-type models may
be modified to include the buoyancy effect by utilizing
the above buoyancy-affected eddy coefficient as
follows :

I T, 62479
0= e (e g

B
i, %—) (11)

y:yl
—uf’=C o

e —
Tk aH Vg, e, 1P

Since there are not enough data to finely adjust the
model constants ¢ and b, a = .12 has been selected
simply by averaging the values in the models (8) and
(9). It is worth noting that this value coincides with
the corresponding one in the streamline curvature
model of Chung et al. [19]. Model constant b has been
recommended by Zeman and Lumley [10] to be about
3.0 which is adopted in the present work. And, for
consistency, the value of 0.18 is also used for C, as
that in the simple gradient-type models (1) and {2).

Now a discussion about the time scale in equation
(10) may be in order. Zeman and Lumley [10] used a
composite time scale

(1 o.zs)*
.=l —+—
T, Tq

in place of 7, in the numerator of equation (10). In
most non-isothermal flows, however, the time scale
ratio 7,/1, lies in a range 0.35-0.6 with an average
value of about 0.5 [20]. Therefore, there is not much
difference between 7, and 1. in numerically calculating
the eddy diffusivities, and for simplicity z, is preferred
in the present study.
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3. RESULTS AND DISCUSSION

A total of five models for third-order scalar flux
and scalar variance diffusive transports have been pre-
sented in the previous section in terms of second-
moment quantities, their derivatives and the mean
temperature. In order to test these models against
measurements, the necessary data must all be available
in the experiments. In the present comparisons, the
following recent experiments are selected due to their
relative completeness of the information about tur-
bulence quantities which have been published through
the literature: Raupach and Legg {2] measured the
turbulent scalar dispersion field from an elevated line
heat source in a turbulent boundary layer. Karnik and
Tavoularis {21] investigated experimentally the heat
diffusion from a continuous line source placed in a
uniformly sheared homogeneous turbulent flow. At
nearly the same time, a similar experiment had been
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~0.2 |-
- L/r — .~ Lumley's model
0.4 1’ — - Welnstock's model
present rmodel
-0.6 ' . '
-2 -1 9] 1 2
/Ly
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performed by Chung and Kyong [3] in a weakly
sheared homogeneous turbulent flow. And, quiet
recently, Veeravalli and Warhaft [22] obtained
detailed turbulence data in the thermal dispersion
field from a heated line source placed in the central
region of a turbulent mixing layer having no mean
shear. The measured distributions of the (triple
moments are compared with predicted results by all
models in Section 2. In doing so, the second-order
quantities and the mean temperature data appearing
in the various model equations are directly taken from
the experimental values.

Comparisons between the experiments and the
model predictions are provided in Figs. 1, 2 and 3 for
002, ©%0 and wh, respectively. The scalar variance
diffusions shown in Figs. 1(b) and (c) reveal that the
appearance of the second term in equations (4) and (5)
does not improve the predictions. Rather, it severely
deteriorates them near the zero-crossing in the central

{b) 0.15 o experimentol data
......... simple grodient model
o010 | Dekeyser and Launder’s model
0.05
2
v e
——5-0.00
U Tp
-0.05
\J «~-—-~ Lumiey's model
-0.10 » " m—m-— Weinstock’'s model
present model
-0.15 ‘ 3 >
-2 -1 0 1 2
y/Lq

(d) 0.03 O experimental data

‘‘‘‘‘‘‘ simple gradient model

———- Dekeyser and Launggr's model
—-—-= Lumiley's model

~——== Weinstock's modelg
0.02 I present model &

Fic. 1. (a) Model predxctxons and experimental (Karnik and Tavoularis’ [21]) data for the vertical transport
of temperature variance, 87, (b) Model prednctxons and experimental (Chung and Kyong’s [3]) data for
the vertical transport of temperature variance, v9°. () Model predlctlons and experimental (Raupach and
Legg’s [2]) data for the vertical transport of temperature variance, 87, (d) Model predictions and _exper-
imental (Veeravalli and Warhaft’s [22]) data for the vertical transport of temperature variance, 062,
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FiG. 2. (a) Model predxctxons and experimental (Karnik and Tavoularis’ [21]) data for the vertical transport

of the vertical heat flux, v™0. (b} Model predtcnons and experimental (Chung and Kyong's [3]) data for

the vertical transport of the vertical heat flux, v°8. {c) Model predxcnons and experimental {Raupach and

Legg’s {2]) data for the vertical transport of the vertical heat flux, v v76. (d) Model predictions and d exper-

imental (Veeravalli and Warhaft’s [22]) data for the vertical transport of the vertical heat flux, #°8. The
vertical scale has been multiplied by 1000.

region. In the non-negligible buoyant flow in Fig. 1(b),
it can be demonstrated clearly that the time scale
modification by buoyancy improves the predictions
both in the stable region (¥ < 0) and the unstable one
(¥ > 0). For Karnik and Tavoularis’ data in Fig. 1(a),
the models of Weinstock, and Dekeyser and Launder
yield the least satisfactory results. In the highly
inhomogeneous flow of Veeravalli and Warhaft, all
models fail to represent the measured data. Never-
theless, it can be said that the simple gradient-type
models yield better profiles in reasonable agreement
with the experiments.

Secondly, the predicted scalar flux diffusions in the
vertical direction, %8, are compared with the mea-
sured profiles in Figs. 2(a}-(d). Experimental data of
Karnik and Tavoularis in Fig. 2(a) and Veeravalli and
Warhaft in Fig. 2(d) represent the most favourable
comparisons with predictions by the simple gradient-
type models. Although, the computed values in the

central regions by the simple gradient-type models in
Fig. 2(b) are too low, the time scale modification to
the model notably shifts the profile in the correct
direction in both the stable and unstable regions. Sig-
nificant shear is present in the central regions of the
experiments of Figs. 2(b) and {c). Therefore, it may
be concluded from the comparisons in Figs. 2(b) and
{c) that the addition of the shear-gradient term to
the simple gradient model, as in models (3) and (5),
improves the estimations of the scalar flux diffusion
in the cross-stream direction.

Finally, Figs. 3(a)~(c) illustrate the computational
performances of the various models for the stream-
wise diffusion of vertical heat flux, wf. Owing to
the lack of necessary data for computing the model,
that of Weinstock is not included in the comparison.
As for Karnik and Tavoularis’ data in Fig. 3(a), both
the simple gradient-type model and the modified one
perform better. However, for flows with an appreci-
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FIG. 3. (a) Model predictions and experimental (Karnik and Tavoularis’ [21]) data for the streamwise

transport of the vertical heat flux, uvf. (b) Model predictions and experimental (Chung and Kyong’s {3])

data for the streamwise transport of the vertical heat flux, uvf. (c) Model predictions and experimental
(Raupach and Legg’s [2]) data for the streamwise transport of the vertical heat flux, uv6.

able shear as in Figs. 3(b) and (¢), the addition of
the shear-gradient contribution also improves the
computation of uvf.

4, CONCLUSIONS

In order to investigate the comparative per-
formances of various computational turbulence
models for third-order diffusive terms, w0 and u,0°,
which appear in the second-order equations for the
kinematic heat flux, uTG, and the temperature variance,
62, respectively, the conventional simple gradient
model, two eddy-damped quasi-normal approxi-
mation models and Weinstock’s theoretical model
based on a formal integration of the Navier-Stokes
equation are summarized and they are applied to a
number of recent measurements in non-isothermal
turbulent flow fields. All second-order quantities and
the mean temperature data necessary to evaluate the
models are taken from the directly measured values.
Available third-order data from the selected measure-

ments are v02, »°0 and wvf. The major concern of the
present study was to see if increasing the complexity
of the model (or using less approximation in the model
derivation) led to better prediction or not.

The comparisons between data and the various pre-
dictions for the scalar variance diffusion term, u,67,
reveal a surprising result that the simple gradient-type
model has the best overall prediction performance
among the models tested here. In addition, a method
to modify the simple gradient-type model is suc-
cessfully proposed to correctly include the buoyancy
effect in the model by introducing a time scale ratio
between the turbulence and the buoyancy, and by
replacing the conventional Reynolds stress in the
simple gradient model with an effective buoyant
Reynolds stress,

i‘i”jcﬂ = 7711 — bﬂ(g!;j-g + gj@)fs-
Such a modification has been shown to shift the pre-
dicted profiles in desirable directions for both therm-

ally stable and unstable layers.
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However, for the scalar flux diffusion terms, uu8,

it is found that the contribution of the shear-gradient
term must be included in the model in predicting tur-
bulent flows with an appreciable shear. Here, again,
the same buoyancy modification to the eddy
coefficient of the model (3) must improve the pre-
dictions of the non-negligible buoyant flow field.
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ETUDE COMPARATIVE DE PLUSIEURS MODELES DE CALCUL POUR LES
MOMENTS TRIPLES DE VITESSE ET DE SCALAIRE DANS UNE FERMETURE
DE SECOND ORDRE

Résumé—Une évaluation comparative de plusieurs modéles de turbulence pour les termes de troisiéme ordre
du transport diffusif, u,0 et #,07% dans les equations de fermeture au second ordre, a été conduite en
appliquant les modeles a plusieurs écoulements turbulents non isothermes. Les quantités de second
ordre apparaissant dans les modeles sont adoptés 4 partir des valeurs mesurées directement. Les modéles
testés sont le modéle conventionnel simple a gradient, le modele avec approximation quasi-normale
d’amortissement turbulent et le modéle théorique de Weinstock qui est dérivé d’une intégration formelle
de I'équation de Navier—Stokes [J. Weinstock, J. Fluid Mech. 202, 319-338 (1989)]. Il est étonnant de
constater que le modéle simple de gradient conduit a des résultats équivalents ou méme meilleur que
d’autres plus compliqués pour la diffusion de la variance d’un scalaire #,6°. Néanmoins on trouve que
le modéle de calcul de la diffusion de flux de scalaire 1,0 doit inclure la contribution du gradient cisaillant
en plus du modéle simple de gradient. Une méthode de correction de flottement est proposée pour tenir
compte de I'effet de flottement dans les modéles de type gradient.
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VERGLEICHENDE UNTERSUCHUNG VERSCHIEDENER RECHENMODELLE FUR
DIE DREIFACHMOMENTE DER GESCHWINDIGKEIT UND SKALARER GROSSEN BEI
DER SCHLIESSBEDINGUNG ZWEITER ORDNUNG

Zusammeniassung—Verschiedene rechnerische Turbulenzmodelle fiir die diffusiven Transportterme dritter
Ordnung (2,0 und 107 in den SchlieBgleichungen zweiter Ordnung wurden vergleichend betrachtet,
indem die Modelle auf verschiedene nichtisotherme turbulente Strémungen angewandt wurden. Die GroBen
zweiter Ordnung in diesen Modellen wurden von direkt gemessenen Werten iibernommen. Folgende
Modelle wurden in der vorliegenden Arbeit untersucht : das gewdhnliche einfache Gradientenmodell ; das
quasi-normale Naherungsmodell mit Wirbeldimpfung und das theoretische Modell nach Weinstock,
welches durch formale Integration der Navier-Stokes-Gleichung hergeleitet wird (J. Weinstock, J. Fluid
Mech. 202, 319-338 (1989)). Es ist recht erstaunlich, daB sich das einfache Gradientenmodell den kom-

plizierteren Modellen ebenbiirtig erweist oder sogar besser ist, im Hinblick auf die Diffusion von u0?. Es

zeigt sich jedoch, daBB das Rechenmodell fiir den skalaren FluB w0 zusitzlich zum einfachen Gradi-

entennmodell den Beitrag des Schergradienten enthalten muB. Es wird zusitzlich ein Verfahren zur Auf-

triebskorrektur vorgestellt, das es erlaubt den AuftriebseinfluB in den Modellen vom Gradiententyp zu
beruicksichtigen.

CPABHHUTEJIBHOE UCCJIIENJOBAHUE PA3JIMUHBLIX PACYETHBIX MOJEJIEA JJIS
MOMEHTOB TPETBEI'O IIOPAAKA OTHOCHUTEJIBHO CKOPOCTH U CKAJISIPA B
3AMBIKAHUAX BTOPOI'O ITOPSJIKA

Amnoramue—JIIpoBoanTcs cpaBHATE/bHAA OLCHKA HECKOJBLKMX DACYETHBIX MOJEICH TypOyJeHTHOCTH
s wicHoB HAQQYINOHHOTO MEPEHOCA TPETHETO MOPHAKA ;4,0 ¥ 4,07 B ypasHeHHAX 3aMBIKAHHS
BTOPOI0O NOPALK4 NCCPEACTBOM HX NPUMEHEHHA K Pa3/IMYHBIM HEN30TEPMHYECKHAM TYPOYIEHTHBIM Teve-
HHSM. Bxo/siinue B MOAE/M BEJIMYAHBI BTOPOTO MOPKAKA B3ATHI U3 NPAMBIX H3MepeHHA. AllpoOupyroTes
CREOyIOWME MoLeu: ODMEHpUHATAA TIPOCTas IPAaJUCHTHAs MOJETb, MONE)Ib KBA3HHOPMAJBHBIX IIpHE-
JIKEHMA BUXPEBOXO 3aTYXAHHA, 4 TAKXKE TEOPeTHYeCKas MONENb BeHHCTOKA, monyyeHHas myTeM Qop-
MAaNbHOI'O HHTErpupoBanus ypasneHus Hapbe-Crokca (J. Weinstock J. Fluid Mech. 202, 319-338 (1989)).
HeoXuaHHBIM pe3yabTATOM SBANIOCH TO, YTO NPOCTasA FPaiMeATHas MOJENDb Tak Ke Wan paxe Gosee
abdexrusaa npu pacuere QudPYIAN CKATSPHOR IHCIIEPCHH u, 02, eM npyrue GoJiee croxubie. OUHAKO
HAHIEHO, YTO PacueTHAd MOIENDb A TAp@YIMH CKAIMPHOIO OTOKA 4, u;0 MOMKHA YHHTHIBATH BKIAL
CHBHIOBHIX PAIMEHTOB B JONOJHCHHE K TpaameHTHOH monend. Kpome Toro, uis yyera 3¢ddekrta
NOXbEMHOR CHIIBI B MOJENAX I'PEAHEHTHOrO THIIA NPERJIOKEH COOTBETCTBYIOUIMH METO/I MONPABKH.



