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Abstract-A comparative assessment of several computational turbulence models for third-order diffusive 
transport terms, u,u,B and q, in second-order closure equations has been carried out by applying the 
models to various non-isothermal turbulent flows. The second-order quantities appearing in the models 
are adopted from directly measured values. The models tested in the present study are : conventional simple 
gradient model, eddy-damped quasi-normal approximation model, and Weinstock’s theoretical model 
which is derived by formally integrating the Navier-Stokes equation [J. Weinstock, J. Fluid Mech. 202, 
319-338 (1989)]. It is rather a surprise to find that the simple gradient model performs equally or even 
better than the other more complicated ones for the scawariance diffusion, u@ However, it is found 
that the computational model for the scalar flux diffusion, u,u,8, must include the shear-gradient contribution 
in addition to the simple gradient model. Moreover, a buoyancy correction method is proposed to take 

into account the buoyancy effect in the gradient-type models. 

1. INTRODUCTKIN 

THE THIRD-ORDER diffusive transport terms, u,u,6 and 
2 

2. THIRD-ORDER DIFFUSIVE TRANSPORT 

MODELS 

uiO , which appear in the second-order closure equa- 2.1. Simple gradient- type model 
tions for the scalar flux (~~0) and the scalar variance The conventional simple gradient-type model for 
(P), respectively, play significant roles in spatially the scalar flux diffusion term, uiuiO, takes the following 
transporting the second-order quantities of interests form (e.g. Launder [9]) : 
in, for example, a thermally stratified atmospheric 
boundary layer [l], the thermal dispersion field behind 
an elevated line heat source [2,3] and a turbulent 

(1) 

thermal convection [4]. 
During its infant period of the second-order model- 

ling, such higher-order moments were approximated 
by simple gradient-type models [5-91. However, since 

it was decidedly shown by Zeman and Lumley [lo] 
that the evolution process of a buoyancy-driven mixed 
layer in the upper atmosphere depends crucially on 
the third-order transport, serious attempts have been 

made at deriving elaborate transport models by 
Dekeyser and Launder [l 11, Lumley [12] and 
Weinstock [ 131, which are in order of increasing com- 
plexity. One of the important questions is whether 

The above model may be derived from the exact equa- 
tion for uiu,Q by neglecting convective transport, 
molecular dissipation, generation due to mean field 
gradients and the contribution of pressure transport. 

Further, it is implicitly assumed that the generation 
due to the shear stress gradient is also negligible com- 
pared with that due to the scalar flux gradient. 

As for the third-order diffusive scalar transport 

term, u@, the following model has been widely 
adopted in calculating atmospheric boundary layer 
flows (e.g. Wyngaard [14]) : 

such elaboration of the model formulation results in -a@ 
a better prediction accuracy or not. - u,o* = Csz,uiuk- 

ax, 
(2) 

The present study is addressed to finding an objec- 
tive answer to the above question by testing the which can be obtained in the manner analogous to 
models against a number of available experiments, the above description for the model (1). 
and to proposing a desirable method to modify the The model constant C, has been assigned to a 
previous simple gradient-type model for flows under number ranging from 0.11 to 1 .O, i.e. 0.11 [2], 0.14 [15], 
a non-negligible buoyancy effect. 0.15 [13], 0.2 [9], 0.3 [8], and 1.0 [12]. Excluding the 
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VI coefficient matrix E dissipation rate of turbulent kinetic energy 
a, 6, C,, C,, C, model constants 4 dissipation rate of temperature variance 

; 
gravitational acceleration in the direction i 0 temperature fluctuation 
source height 0, temperature scale 

K,, turbulent eddy coefficient tensor L’, turbulent eddy diffusivity 

Ld half-width of mean temperature profile Th buoyancy time scale 
iv Brunt-VlisSilH frequency, @fi dT/dy) “’ ra time scale for Weinstock’s model in 

q2 twice the turbulent kinetic energy, z+, equation (7) 
T mean temperature r, dynamic time scale 
li mean velocity rff thermal time scale. 
M velocity scale, u2 = ju,U, 

u* friction velocity 
u, 0, MI velocity fluctuations in axial, vertical, 

Subscripts 

and lateral directions, respectively 
eff effective 

X, 4‘ coordinate axes in axial and vertical P peak. 

directions, respectively. 
Superscripts 

Greek symbols ( ) conventional time average 
fl thermal coefficient of cubical expansion r.m.s. value. 

highest value which has not been used by others, C, 2.3. tumley’s model 
is made equal to the average value of 0.18 in the 
present calculation. 

2.2. Dekeyser and Launder’s model 
Dekeyser and Launder [I I] have proposed several 

---- 2 alternative models for u,uje and &I , which are derived 
___ -i 

from the exact transport equations for uju,B and u,&, 
respectively, using a number of simplifying assump- 
tions. The differences between the alternatives arise 
from the inclusion or exclusion of a dissipative term 
and a pressure-isotropization term in the modelling 
process. However, since they were not able to con- 
clude that any of the models performed distinctively 
better than the others, the following simplest models 
are tested in the present comparative study : 

where C, = 0.11 and z, zz q2/2& is the turbulent 
velocity time scale. 

It may be noted by comparing these models with 
those of (I) and (2) that the last terms in (3) and (4) 
are added to the simple gradient-type models. The 
appearance of these terms implies that the con- 
tribution of the shear stress gradient to the generation 
of U&I and that of the scalar flux gradient to the 
generation of uiS2 are retained in formulating the 
models. 

Neglecting substantial derivatives, production and 
rapid terms, and higher-order cumulants in the trans- 
port equations for u,u,O and u,02, Lumley [12] has 
presented algebraic equations for the third-order 
terms in tensorial form. Explicit expressions for uiu,O 
and u,t12 from their equations are as follows : 

where C, = 3.5, C, = 7.5, 

‘3 and z6, = t? /2~~, the turbulent thermal time scale. 
Since the inhomogeneity in temperature is assumed 
to be weak, the buoyancy effect is neglected in the 
models. 

2.4. Weinstock’s modet 
The above models were derived based on the eddy- 

damped quasi-normal approximation as applied to 
single-point moments. But, it was found by Wyngaard 
[14] that there is a significant discrepancy for eddy- 
damping in inhomogeneous flows. In order to avoid 
such basic assumptions inherent in the eddy-damping 
method, Weinstock [13] performed a formal inte- 
gration of the Navier-Stokes equation that permits 
one to express single-time third-order moments in 
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terms of two-time fourth-order moments, which are 
then evaluated by neglect of two-time fourth-order 
cumulants. Simplifying assumptions he made are : (a) 
all quantities are assumed to vary slowly in space 
and time compared with the integral length and the 
Lagrangian time scale ; (b) the anisotropy is small ; (c) 

average quantities may vary in the vertical direction 
(horizontal stratification) only ; and (d) the mean flow 

is unidirectional in the form, U = [C&X& 0, 01. 
The final models for the third-order transport terms 

are represented in matrix form : 

[- 

__ - - 
au: a? ih,~, a~,e 3~,6 @ T 

x G’a.u2’.w,‘ax,’ #3.x, ‘kc* I. 
(7) 

Here, TV is a time scale defined by 

0.15Tv 

z0 = iio. 17N%;H(NZ) (8) 

for high Reynolds number, N2 = (gfiLJT/ax,) is the 
Brunt-VBisHlli frequency, II is the Heaviside step 
function and 6 is the thermal expansion coefficient. 
The coefficient matrix [A] has 4 x 6 elements which are 
functions of N2, Tand second-order terms (for details, 
see ref. [ 131). 

In the k--e turbulence model, the eddy coefficients 
of the third-order diffusive transport terms are rep- 
resented by the turbulent eddy diffusivity v,/G., where 
(T, is the turbulent Prandtl number. Such practice is 
based on the assumption that the second-order tur- 
bulence quantities are transported in a manner similar 
to the momentum and heat. 

For horizontal flows under an appreciable buoy- 
ancy effect, the algebraic stress model of Ljuboja and 
Rodi 1161 or Chung and Sung 1171 can be manipulated 
to obtain the eddy diffisivity, vt, in the following 
form : 

where v is in the direction opposite to the gravitational 
vector. Model constants a, b and C, are functions of 
other constants. Adopting the constants in Ljuboja 
and Rodi [16], a = 0.075, b z 0.17 and C, !G 0.23. The 
expression (9) together with the time scale in equation 
(8) strongly implies that a certain turbulent time scale 
in a buoyancy-affected flow field must depend on the 
time scale ratio Nz, and that the velocity scale squared 
for turbulent transport processes be a function of 
buoyancy. For a thermally stable layer N2 > 0 and 
3 < 0, hence the turbulent eddy coefficient (9) 
becomes smaller than that in neutral stratification 
and for a thermally unstable one, vice versa ; these 
characteristics are physicalfy realistic. 

In order to generalize the above observation to the 
turbulent eddy coefficient K, of the third-order diffus- 
ive transport terms, the buoyancy relaxation time 
scale, tb = ~E~/(N*@), and the effective buoyant 
Reynolds stress, 

uir$, = uiuj - bjl(g,u,B + gih$)r,, 

both of which are proposed by Lumley et al. [l, 181, 
are introduced to construct the turbulent eddy 
coefficient in a form 

KLJ = ” 1 +uH(N*)T,/T~ 
[UiUj-bg(gi~+gjuie)7tll, 

(10) 

where, gj is the gravitational vector field, 
g, = (0, -9, 0). The Heaviside function ti(N’) is also 
introduced in the above formulation as in model (8) 
due to the reason discussed in Weinstock [13]. From 
the physical point of view, the eddy coefficient should 
be positive. Therefore, when the bracketed term in 
equation (10) becomes negative due to strong down- 
ward heat flux very near a heat source or a sink, for 
example, Kij must be made equal to zero. 

Accordingly, the simple gradient-type models may 
be modified to include the buoyancy effect by utilizing 
the above buoyancy-affected eddy coefficient as 
follows : 

+G$$) (11) 
1 

7, -au2 --up = cs---y-U.U. -. 
1 faH(N )7,/T, z be ax, (12) 

Since there are not enough data to finely adjust the 
model constants a and 6, a = 0.12 has been selected 
simply by averaging the values in the models (8) and 
(9). It is worth noting that this value coincides with 
the corresponding one in the streamline curvature 
model of Chung et al. [ 191. Model constant b has been 
recommended by Zeman and Lumley [lo] to be about 
3.0 which is adopted in the present work. And, for 
consistency, the value of 0.18 is also used for Cs as 
that in the simple gradient-type models (1) and (2). 

Now a discussion about the time scale in equation 
(10) may be in order. Zeman and Lumley [lo] used a 
composite time scale 

in place of z, in the numerator of equation (10). In 
most non-isothe~al flows, however, the time scale 
ratio 7,/z, lies in a range 0.35-0.6 with an average 
value of about 0.5 [20]. Therefore, there is not much 
difference between 7, and z, in numerically calculating 
the eddy diffusivities, and for simplicity 7, is preferred 
in the present study. 
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3. RESULTS AND DISCUSSION 

A total of five models for third-order scalar flux 
and scalar variance diffusive transports have been pre- 
sented in the previous section in terms of second- 
moment quantities, their derivatives and the mean 
temperature. In order to test these models against 
measurements, the necessary data must all be available 
in the experiments. In the present comparisons, the 
following recent experiments are selected due to their 
relative completeness of the information about tur- 
bulence quantities which have been published through 
the literature: Raupach and Legg [2] measured the 
turbulent scalar dispersion field from an elevated line 
heat source in a turbulent boundary layer. Karnik and 
Tavoularis [21] investigated experimentally the heat 
diffusion from a continuous line source placed in a 
uniformly sheared homogeneous turbulent flow. At 
nearly the same time, a similar experiment had been 

(a) 
0.6 

__..i___ s,mp e 

0.4 
---- Oskeyser 

Launder’s model 

0.2 

2 
ve 

--cy- 0.0 
V’B 

-0.2 

-0.6 
-2 -1 0 1 2 

Y/L, 

(cl 

h 

performed by Chung and Kyong [3] in a weakly 
sheared homogeneous turbulent flow. And, quiet 
recently, Veeravalli and Warhaft [22] obtained 
detailed turbulence data in the thermal dispersion 
field from a heated line source placed in the central 
region of a turbulent mixing layer having no mean 
shear. The measured distributions of the triple 
moments are compared with predicted results by all 
models in Section 2. In doing so, the second-order 
quantities and the mean temperature data appearing 
in the various model equations are directly taken from 
the experimental values. 

Comparisons between the experiments and the 
model predictions are provided in Figs. 1, 2 and 3 for 
o@, a and no@, respectively. The scalar variance 
diffusions shown in Figs. 1 (b) and (c) reveal that the 
appearance of the second term in equations (4) and (5) 
does not improve the predictions. Rather, it severely 
deteriorates them near the zero-crossing in the central 

(b) 0.15 

0.10 

jr. 
---- Dekeyser and Launder’s model 

-.--- Lumley’s model 
‘a; ---- Wainstock’s model 

___ present model 

(d) 0.03 

0.02 

0 experimental data 
---------simple gradient model 

---- Deksyaer and Lou 
----- Lumley’s model 
__-- Weinstock’a mode 
.- present model 

Rti. 1, (a) Model predictions and experimental (Karnik and Tavoularis’ 1211) data for the vertical transport 
of temperature variance, z. (b) Model predictions and experimental (Chung and Kyong’s [3]) data for 
the vertical transport of temperature variance, @. (c) Model predictions and experimental (Raupach and 
Leg&s [2]) data for the vertical transport of temperature variance, ue-‘. (d) Model predictions and exper- 

imental (Veeravalli and Warhaft’s [22]) data for the vertical transport of temperature variance, UT. 
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FIG 2. (a) Model predictions and ex~rimental (Kamik and Tavoularis’ 1211) data for the vertical transport 
of the vertical heat Aux, &?. (b) Model predictions and ex~~mental (Chung and Kyong’s [3j) data for 
the vertical transport of the vertical heat flux, &. (c) Model predictions and experimental (Raupach and 
Legg’s [2]) data for the vertical transport of the vertical heat flux, VT. (d) Model predictions and exper- 
imental (Veeravalli and Warhaft’s [22]) data for the vertical transport of the vertical heat flux, r;z8. The 

vertical scale has been multiplied by 1000. 

region. In the non-negligible buoyant flow in Fig. 1 (b), 
it can be demonstrated clearly that the time scale 
modi~cation by buoyancy improves the predictions 
both in the stable region (v < 0) and the unstable one 
(v > 0). For Karnik and Tavoularis’ data in Fig. I (a), 
the models of Weinstock, and Dekeyser and Launder 
yield the least satisfactory results. In the highly 
inhomogeneous flow of Veeravalli and Warhaft, all 
models fail to represent the measured data. Never- 
theless, it can be said that the simple gradient-type 
models yield better profiles in reasonable agreement 
with the experiments. 

Secondly, the predicted scalar ff ux diffusions in the 
Y- vertical direction, u 8, are compared with the mea- 

sured profiles in Figs. 2(a)-(d). Experimental data of 
Karnik and Tavoularis in Fig. 2(a) and Veeravalli and 
Warhaft in Fig. 2(d) represent the most favourable 
comparisons with predictions by the simple gradient- 
type models. Although, the computed values in the 

central regions by the simple gradient-type models in 
Fig. 2(b) are too low, the time scale modification to 
the model notably shifts the profile in the correct 
direction in both the stable and unstable regions. Sig- 
nificant shear is present in the central regions of the 
experiments of Figs. 2(b) and (c). Therefore, it may 
be concluded from the comparisons in Figs. 2(b) and 
(c) that the addition of the shear-gradient term to 
the simple gradient model, as in models (3) and f5), 
improves the estimations of the scalar flux diffusion 
in the cross-stream direction. 

Finally, Figs. 3(a)-(c) illustrate the computational 
performances of the various models for the stream- 
wise diffusion of vertical heat flux, uu0. Owing to 
the lack of necessary data for computing the model, 
that of Weinstock is not included in the comparison. 
As for Karnik and Tavoularis’ data in Fig. 3(a), both 
the simple gradient-type model and the modified one 
perform better. However, for flows with an appreci- 
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--------- simple gradient model 
---- Deksyser and Launder’s model 
----- Lumley’s model 
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FIG. 3. (a) Model predictions andgerimental (Karnik and Tavoularis’ [21]) data for the streamwise 
transport of the vertical heat flux, ~0. (b) Model predictions and experimental (Chung and Kyong’s [3]) 
data for the streamwise transport of the vertical heat flux, uvti. (c) Model predictions and eqrimental 

(Raupach and Legg’s [2]) data for the streamwise transport of the vertical heat flux, uu0. 

able shear as in Figs. 3(b) and (c), the addition of 
the shear-gradient contribution also improves the 

computation of ~210. 

4. CONCLUSIONS 

In order to investigate the comparative per- 
formances of various computational turbulence 
models for third-order diffusive terms, uiu,6 and u,O’, 

which appear in the second-order equations for the 
kinematic heat flux, ujO, and the temperature variance, 
eT, respectively, the conventional simple gradient 
model, two eddy-damped quasi-normal approxi- 
mation models and Weinstock’s theoretical model 
based on a formal integration of the Navier-Stokes 
equation are summarized and they are applied to a 
number of recent measurements in non-isothermal 
turbulent flow fields. All second-order quantities and 
the mean temperature data necessary to evaluate the 
models are taken from the directly measured values. 
Available third-order data from the selected measure- 

ments are #, fi and UVQ. The major concern of the 

present study was to see if increasing the complexity 
of the model (or using less approximation in the model 
derivation) led to better prediction or not. 

The comparisons between data and the various pre- 

dictions for the scalar variance diffusion term, uj02, 
reveal a surprising result that the simple gradient-type 
model has the best overall prediction performance 
among the models tested here. In addition, a method 

to modify the simple gradient-type model is suc- 
cessfully proposed to correctly include the buoyancy 
effect in the model by introducing a time scale ratio 
between the turbulence and the buoyancy, and by 
replacing the conventional Reynolds stress in the 
simple gradient model with an effective buoyant 
Reynolds stress, 

u, %~ = u;u, - bjqg,u, fl+ g,u;O)z,. 

Such a modification has been shown to shift the pre- 
dicted profiles in desirable directions for both therm- 
ally stable and unstable layers. 



Various computational models 2569 

However, for the scalar flux diffusion terms, u,@, 

it is found that the contribution of the shear-gradient 

term must be included in the model in predicting tur- 
bulent flows with an appreciable shear. Here, again, 
the same buoyancy modification to the eddy 
coefficient of the model (3) must improve the pre- 
dictions of the non-negligible buoyant flow field. 
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ETUDE COMPARATIVE DE PLUSIEURS MODELES DE CALCUL POUR LES 
MOMENTS TRIPLES DE VITESSE ET DE SCALAIRE DANS UNE FERMETURE 

DE SECOND ORDRE 

R&un&Une &valuation comparative de plusieurs modkles de turbulence pour les termes de troisitme ordre 
du transport diffusif, uiu,O et p, dans les e+ations de fermeture au second ordre, a &t& conduite en 
appliquant les modtles i plusieurs Ccoulements turbulents non isothermes. Les quantitts de second 
ordre apparaissant dans les modtles sont adopt& g partir des valeurs mesurt?es directement. Les modkles 
test&s sont le modtle conventionnel simple B gradient, le modkle avec approximation quasi-normale 
d’amortissement turbulent et le modele thtorique de Weinstock qui est d&iv& d’une intbgration formelle 
de l’tquation de Navier-Stokes [J. Weinstock, J. Fluid Mech. 202, 319-338 (1989)]. 11 est irtonnant de 
constater que le modtle simple de gradient conduit i des rCsultats Cquivalents ou mime meilleur que 
d’autres plus compliquts pour la diffusion de la variance d’un scalaire ~7. Ntanmoins on trouve que 
le modkle de calcul de la diffusion de flux de scalaire u,u,B doit inclure la contribution du gradient cisaillant 
en plus du modkle simple de gradient. Une mkthode de correction de flottement est proposke pour tenir 

compte de l’effet de flottement dans les mod&les de type gradient. 
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VERGLEICHENDE UNTERSUCHUNG VERSCHIEDENER RECHENMODELLE FUR 
DIE DREIFACHMOMENTE DER GESCHWINDlGKEIT UND SKALARER GROSSEN BEI 

DER SCHLIESSBEDINGLJNG ZWEITER ORDNUNG 

Zusammenfassung-Verschiedene rechnerische Turbulenzmodelle fiir die diffusiven Transportterme dritter 

Ordnung (zq_+H und up) in den Schliehgleichungen zweiter Ordnung wurden vergleichend betrachtet, 
indem die Mod&e aufverschiedene nichtisotherme turbulente Stromungen angewandt wurden. Die GraBen 
zweiter Ordnung in diesen Modellen wurden von direkt gemessenen Werten iibernommen. Folgende 
Modelle wurden in der vorliegenden Arbeit untersucht : das gewiihnliche einfache Gradientenmodell ; das 
quasi-normale Naherungsmodell mit Wirbeldimpfung und das theoretische Model1 nach Weinstock, 
welches durch formale lntegration der Navier-Stokes-Gleichung hergeleitet wird (J. Weinstock, J. Fluid 
Mrch. 262, 319-338 (lYR9)). Es is1 recht erstaunhch, daB sich das einfache Gradientenmodell den kom- 

plizierteren Modellen ebenbiirtig erweist oder sogar besser ist, im Hinblick auf die Diffusion von u,O’. Es 

zeigt sich jedoch, dab das Rechenmodell fur den skalaren FluI r+O zusltzlich zum einfachen Gradi- 
entenmodell den Beitrag des Schergradienten enthahen muB. Es wtrd zusatzhch ein Verfahren zur Auf- 
triebskorrektur vorgestellt. das es erlaubt den AuftriebseintluS in den Modellen vom Gradiententyp LU 

beriicksichtigen. 

CPABHMTEJIbHOE RCCJIEAOBAHHE PA3JIM9HbIX PAC’IETHbIX MOAEJIEA flJIR 
MOMEHTOB TPETbEl-0 IIOP5IAKA OTHOCHTEJIbHO CKOPOCTH II CKAIIRPA B 

3AMbIKAHHtlX BTOPOFO IIOPRAKA 

.Atm0T~*-IIp0~0nurca cpaeuarenbuan ouerika uecrconbxux pac~erubrx hronenel Typ6yJIeHTHOCTH 

AJUI 'IJleHOB AHt#I@y3HOHHOrO nepeHOCa T@TberO nOpfQKa g I4 UT B ypaBHeHHRX 3aMbIKaHHII 

BTOpO~onOpnAKanOC~ALTBOMwXnpHMeaelieR K pa3JEi"%HbIMHeWsOTepMH'ieCKHMTyp6yJIeHTHbIMTe~e- 

HBIM.~XOAIIL4lleBMOA~JIIIBenBYBHbI BTOpOrO nOpKAKa B3XTblB3 npIihtbIXH3MC~HEifi. Anpo6upyro~cn 
Cnenyl0mue M”Aenu: o6meupaun~dr npOCTaX rpaAHeHTHaN MOAeAb,MOAeJIb ICB~3PHOpMaJIbHblX npri6- 
nexeaait saxpewro 3aTyxanm, a TaKxe TeopeTmecKan MoAenb BeiiHcToKa, non~erlaan nyTeM @op- 

Manbwto HHTerpaposaHawypaMHeHun Haebe-CToKca (J.WeinstockJ.FluidMech.202,319-338(1989)). 
Heox~auusrM F3yAbTaTOM ILBWJIOCb TO,qTO npOCTaSl rpaAEWiTHat4 MOAeAb TaK XC EiJIEi .lWXCe 6onee 
3+@eKTmHa npki pacwre AI@$y3HII CKWIKpHOti .IUiCn~pGUi uiB”,‘EM Ap)‘We 6onee CJIOIKHbie.OAHaKO 
HafiAWO,STO paC',eTHaX MOAeAb AJIK AIi44Iy3Wi CKibWpHOrO iIOTOKa u,ule AOJDKHa y'UiTblB~Ib BKJIaA 

CABEWOBblX rpaAHeHTOB B AOnOJlHeHHe K rpaAtieHTHOfi MOAeJlH. KpoMe TWO, AJIll yWTa 3@'$eKTa 

nOA~MHOiiCltnb~BM~Aen~x~aMeHTHoroT~nan~Ano~eHCOOTBeT~B~~llkMeroAnorlpaBK~. 


